Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein
نویسندگان
چکیده
The green fluorescent protein (GFP) of the bioluminescent jellyfish Aequorea and its mutants have gained widespread usage as an indicator of structure and function within cells. Proton transfer has been implicated in the complex photophysics of the wild-type molecule, exhibiting a protonated A species excited at 400 nm, and two deprotonated excited-state species I* and B* with red-shifted excitation ∼475 nm. Photochromicity between the protonated and deprotonated species has been reported upon 400 nm excitation. Using precise time-resolved spectroscopy, we have been able to distinguish the fluorescence lifetimes of the I and B species (∼3.3 and ∼2.8 ns, respectively) and show that the irreversible photochromicity which we observe is due to formation in the excited state of the B species, which cannot return to other species in the ground state. The ground state A and I species are in thermal equilibrium. Anisotropy measurements indicate that the chromophore lies rigidly in the molecule with a rotational correlation time of ∼15.5 ns, as is to be expected for a molecule of this size. Time-resolved measurements of enhanced yellow fluorescent protein (EYFP) and red-shifted green fluorescent protein (RSGFP) were also analyzed.
منابع مشابه
Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector
It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...
متن کاملIn vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملShifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry
Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملSimultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is ham...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999